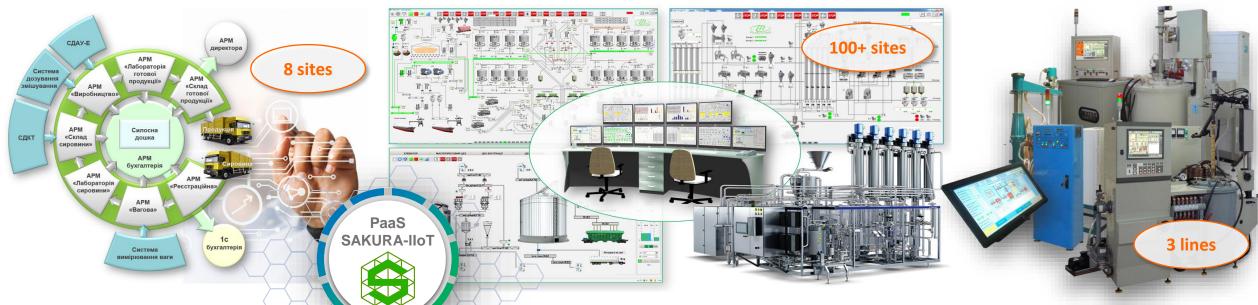


- ✓ Thirty years of experience in complex automation of agribusiness enterprises
- ✓ The full cycle of automation from design to commissioning
- ✓ Exclusively proven industrial solutions
- ✓ Own SAKURA-IIOT cloud software platform of the Internet of Things



Automated Design System "Route" / SCADA

Crystal Growing Systems

Car Sampling Systems

Система відеоконтролю Система радіокерування 5,28м — 1750

4 shededodododo

Hopper Railway Car Robotic Sampling Systems

Monitoring Systems

INNOVATIONS

Operational Excellence

Reduction of air emissions

INNOVINNPROM

Energy efficiency

Digital product passport

Innovations in better adaptation

Automated Design System "ROUTE" for SCADA

30 years of experience

Reasonable Simplification

Four systems into one

Augmented Reality

· Autonomous Factories

· Cloud Computing

· Digital Twins

· AI & ML

Agro-Industrial Enterprises SCADA

Industrial Internet of ThingsBig Data & Data Sharing

Improving the system

Adding new features and capabilities

Flexible robotics Advanced robotics

Robotic grain sampling

SACURA-ENEF
Energy monitoring system

SaaS

SACURA-APM

Asset Performance Management

SaaS

SaaS

SACURA-M&R

Maintenance & Repair

SaaS

PaaS SAKURA-IIoT INNOVINNPROM

SACURA-ECO Environmental control

SACURA-Business

ERP/PLM/MES

SaaS

Shared databases

Open Source

Transfer to cloud services

Provision of services as SaaS

Environmental impact analysis

Round-the-clock control

Support for all OT and IT protocols

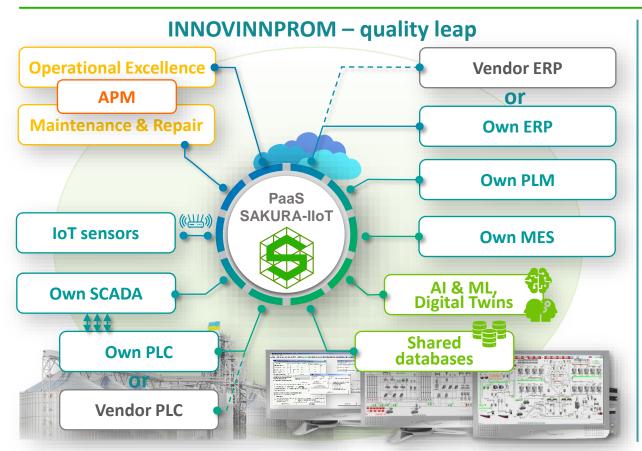
Ability to integrate cheaper IoT devices and sensors

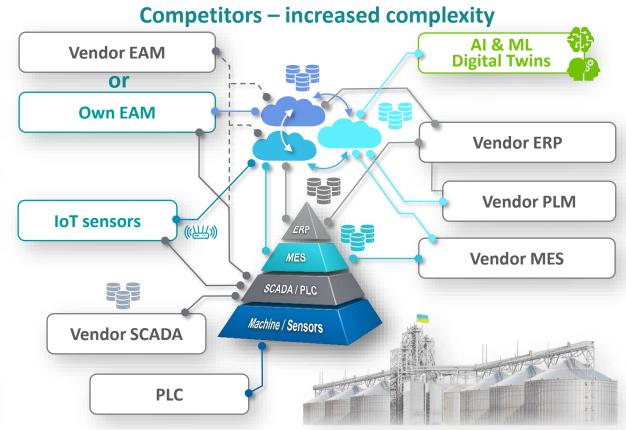
Application of modern IT technologies

Cooperation with DIH and universities

Quantitative and qualitative accounting system

The Best Industry Solutions


of INNOVINNPROM are adapted to the conditions of the region


INDUSTRY 4.0

COMPETITIVE ADVANTAGE

	INNOVINNPROM	Competitors
Architecture	Simplified: SCADA + Own Platform on a Cloud	Classic: SCADA + eclectically added ERP / PLM / AEM / MES
Industrial Internet of Things	As a component of the PaaS	Added solution
Data Sharing	Consolidated Enterprise Database	Disparate databases and systems
AI & ML, Digital Twins	As a component of the PaaS	Added solution
Technology ownership	Specialized PaaS, ADC SCADA, APM	Adaptation of vendor systems to customer requirements
Software implementation	SaaS	Hosted Software and applications

Company Landscape

Suppliers -

kubernetes

MOELLER (A)

CISCO

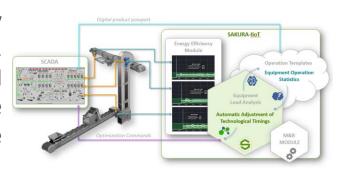
Vinnytsia cluster of instrument making and automation:

Universities

Our PORTFOLIO

Our TEAM

Purpose of Attracting Investments



Our team, <u>together</u> with the scientific team of the Department of System Analysis and Information Technologies (SAIT) of the Faculty of Intelligent Information Technologies and Automation of the Vinnytsia National University, headed by <u>Vitaly Mokin</u> (Head of the Department of SAIT, Doctor of Science, Professor) within the framework of Horizon 2020 grant funding (grant agreement No. 873155), investigated the feasibility of using AI&ML to optimize the energy efficiency of grain elevators.

The essence of the project is to add to the existing SCADA production management inexpensive IIOT systems that will monitor the operation and energy consumption of each unit of grain elevator equipment. At the same time, this equipment is small-sized and is installed <u>without reassembling the existing control cabinets</u>.

In the project, we investigated the feasibility of using AI&ML for forecasting the energy efficiency of technological routes for moving grain and analyzing the operation of routes. We got results in the range of 3...5% savings. However, the general control of all technological processes due to the optimization of the SCADA operation and administrative measures results in savings of up to 15%. That's not all, with the organization of productive M&R, the overall energy efficiency of the enterprise can be increased up to 25%.

We are looking for investments to continue our work in two directions:

- 1. Deep analysis of the impact of AI&ML on all technological processes, taking into account weather conditions, time of day, personnel shifts, logistics chains.
- 2. Initial implementation of technologies at enterprises in Ukraine, Moldova and Romania with the aim of their further commercial support.

INDUSTRY 4.0

SAKURA-ARM Asset Performance Management System

SAKURA-APM

Asset Performance Management is a system for managing the efficiency of production assets based on the technologies of the fourth industrial revolution (Industry 4.0).

The term "assets" means any production equipment - both equipment that ensures the vital activity of enterprises (power grids, substations, boilers, compressors, ...) and that which carries out processing and production of products (furnaces, machines, dispensers, bottling or assembly lines, etc.).

SAKURA-APM contains two main components:

- Maintenance and Repair (MRO)
- Production management systems aimed at operational excellence (Operational Excellence).

Reduction of operating costs is achieved due to better reliability of assets, extension of their service life (life cycle), reduction of the cost of implementation and operation.

This project received funding from the European Union's Research and Innovation Program Horizon 2020 within the framework of the BOWI project, financed under grant agreement No. 873155

SAKURA-APM Workspace

Full Control and Analytics at All Levels - Holding / Enterprise / Production Line / Equipment

Internet of Things

Artificial Intelligence

Machine Learning

Edge Computing

Big Data

Cyber Security

Digital Twin

SAKURA-APM Modules

The Enterprise module

visualizes consolidated, comparative, detailed and analytical information coming from holding companies. This information is focused on quantity and quality of products, energy consumption and energy efficiency of technological operations of a holding's enterprises.

The Operational Excellence module

provides similar metrics as The Enterprise module, but for a particular enterprise.

The Maintenance and repair module (M&R)

provides planning and control of maintenance and repairs at the holding companies.

The main types of information are information on the operation of equipment, energy consumption, use of spare parts and materials during maintenance and repairs.

The Energy Efficiency module

provides low level metrics and analytical information on the consumption of the main types of energy by each unit of equipment, technological group and enterprise as a whole. Based on the obtained data, the calculation of energy efficiency of equipment and technological operations is performed.

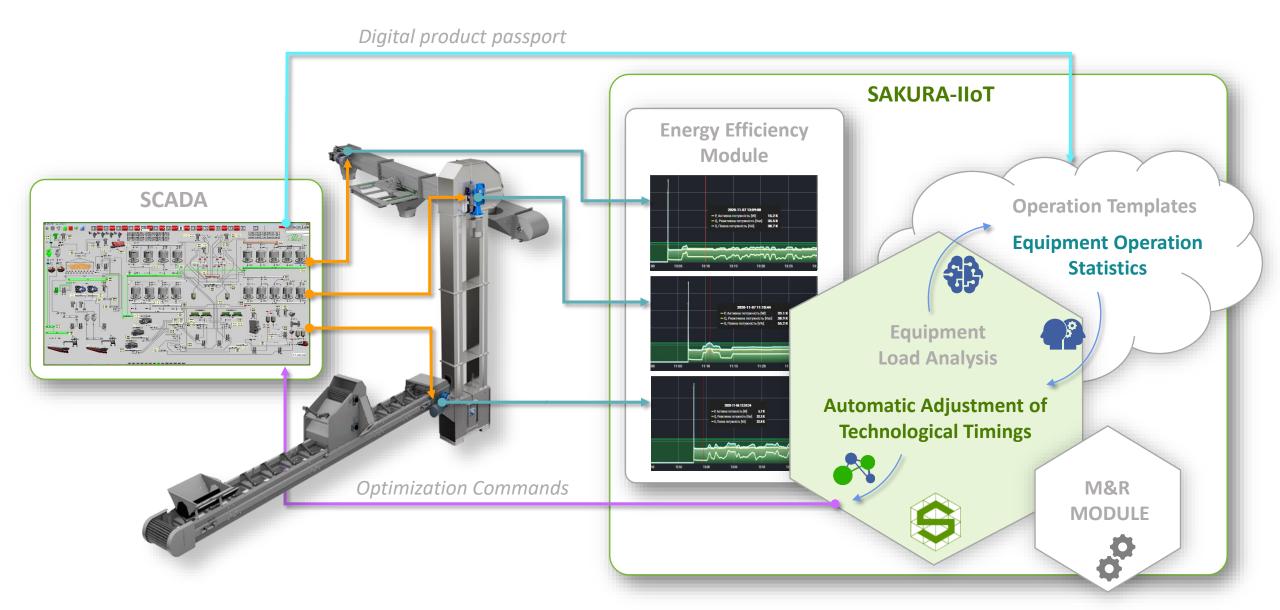
Energy Efficiency of Production - SAKURA-Technology

Internet of Things
Інтернет речей

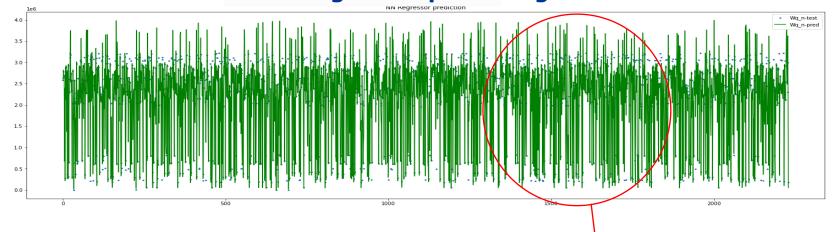
Artificial Intelligence
Штучний інтелект

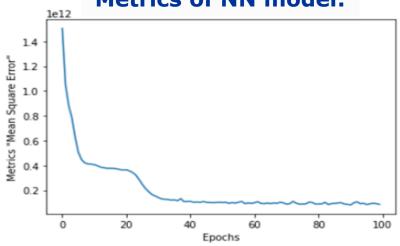
Machine Learning
Машинне навчання

Digital Twin


- ✓ Total control of equipment operation
- ✓ Intelligent adjustment of technology
- ✓ A significant reduction in the impact of the human factor
- ✓ Increasing the efficiency of equipment use
- ✓ Increasing the energy efficiency of technology
- ✓ Significant increase in the efficiency of business processes

Application of AI&ML


Creating Trained Neural Network Model for Grain Elevator Route Based on Real Data


ML of NN model:

Layer (type)	Output Shape	Param #		
dense (Dense)	(None, 256)	1280		
dense_1 (Dense)	(None, 128)	32896		
dense_2 (Dense)	(None, 64)	8256		
dense_3 (Dense)	(None, 32)	2080		
dense_4 (Dense)	(None, 3)	99 =======		
Total params: 44,611				

NN Regressor predicting:

Metrics of NN model:

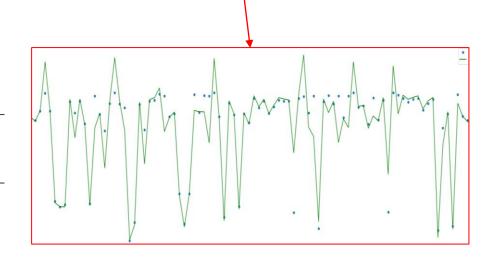
Accuracy:

Route 0 prediction

Wp_n Relative error: 9.646%

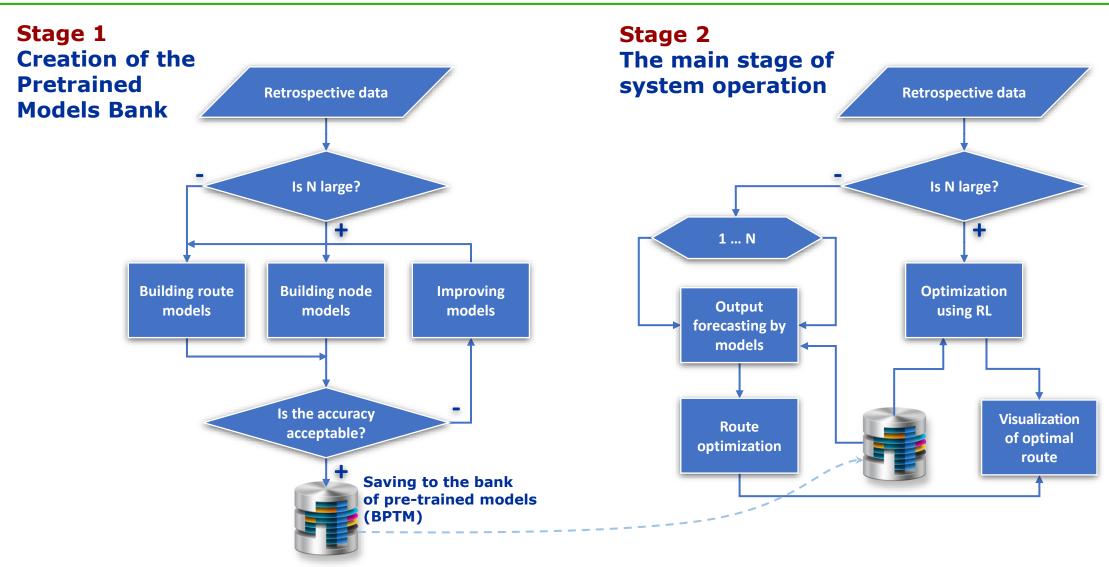
Wp_n r2score : 0.8129453521752672

Route 1 prediction

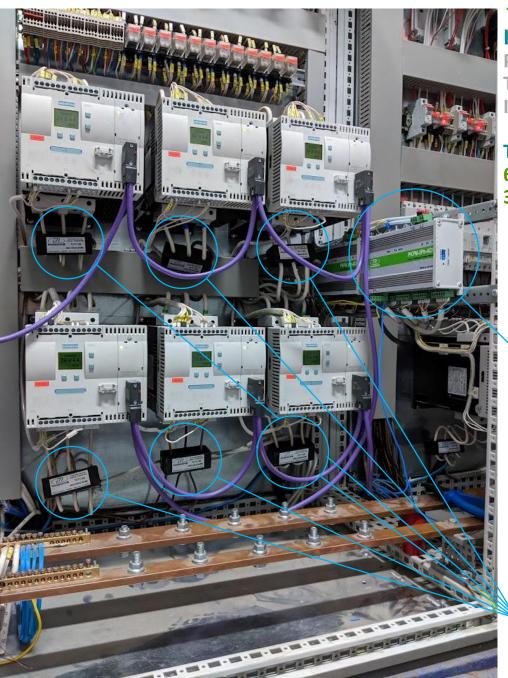

Wq_n Relative error: 9.425%

Wq_n r2score : 0.8476444593901902

Route 2 prediction


Ws_n Relative error: 9.447%

Ws_n r2score : 0.8420825194985004

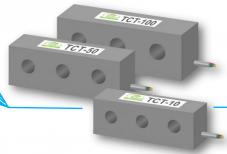


Construction of Algorithms for Optimizing Grain Elevator Routes Based on New Data Using Machine Learning Technologies with Reinforcement

Installation of Equipment Without Reassembly

Installed:

Power Meters 17 units Transformers 65 units IoT Gateways 2 units


Total:

65 units controlled equipment 3,000 control channels per second

4 Channel Smart Power Meters INNOVINNPROM

Innovative 3 Phase Transformers INNOVINNPROM

Problem Discovery and Diagnostics

Example of using one unit of equipment out of 65:

Test operation showed that more than 17% of the company's equipment was used inefficiently. Moreover, if electric motors were idling without load, the energy consumed by them dropped insignificantly. The reason is the high reactive component of energy consumption.

As a result, energy is released into the air, contributing to cable lines over-heating. This is the main reason for excessive energy consumption by the company and excessive wear of equipment.

Equipment efficiency - 25%

during 50% of the technological process

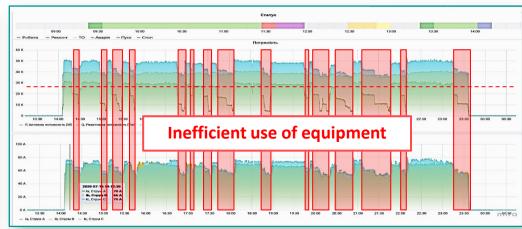
Electricity losses 37 kVA/h

prevalence of the reactive direct electricity losses

Result:

More than 25 kVAh was lost during the technological process lasting 1 hour 20 minutes

The task of the SaaS SAKURA-T:


Using AI & ML, automatically detect cases of suboptimal use of equipment and provide appropriate correction commands to SKADA

The Results of Proof of Concept

The period of test operation - from July 2020 to January 2022, only 16 months

	Wp, Active energy [kWh]	Wq, Reactive energy [kVARh]	Ws, Full energy [kVAh]
Consumed during the trial operation	388 238	772 376	934 885
On average, daily	808,83	1 609,17	1 947,68
Inefficient operation at load <40%	66 000,46	131 303,92	158 930,45
Losses, Euros			31 786,09

The table takes into account only electricity losses, excluding:

- operation of ventilation, aspiration and lighting systems;
- gas costs for drying products;
- related operating losses.

Altogether, total losses can be 3 ... 5 times higher.

The task of AI & ML:

- Optimization of technological delays
- Product life cycle control
- Adjustment of technological parameters depending on product quality
- Forecasting the cost of energy resources
- Recognition and correction of human errors

The result of the implementation of SAKURA-T in addition to financial costs will reduce emissions of pollutants.

Economic Advantages

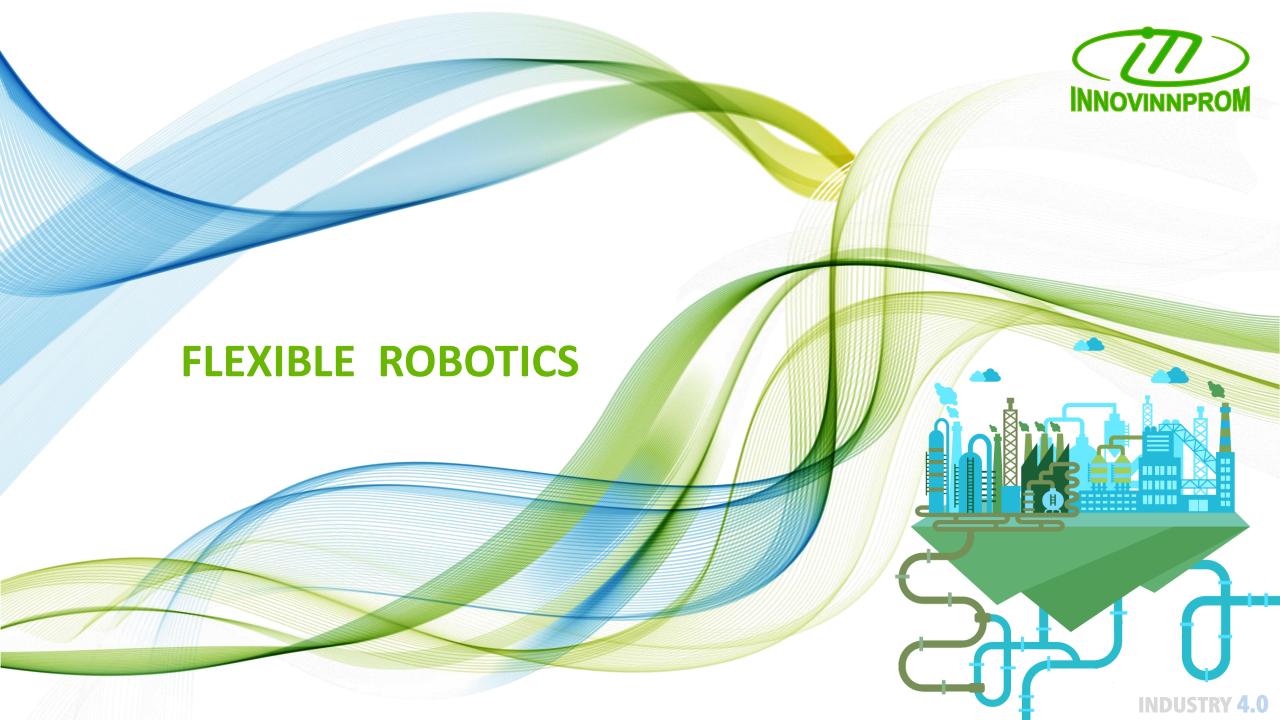
Reduction of energy consumption of technological equipment - up to 10%

Achieved by selecting and exploiting the most energy-efficient modes of operation of the equipment and optimization of technological delays

Reduction of technological losses - up to 15%

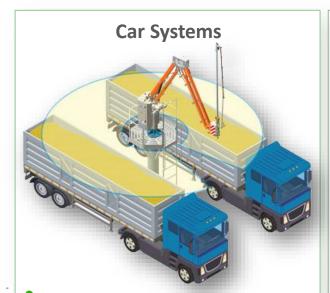
Made possible by preventing violations of established algorithms and standards at all stages of production, continuous monitoring of technological operations and personnel actions

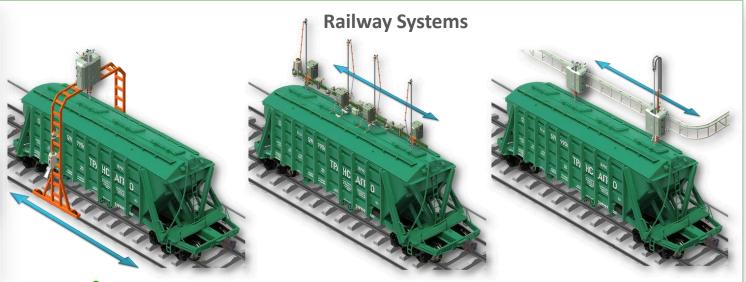
Improving energy efficiency of production - up to 20%


Attained through continuous monitoring and analysis of energy efficiency of production, control of accuracy and timeliness of completing technological tasks

Extend equipment service life - up to 25%

As a result of planning and monitoring the maintenance and repair of equipment, quality control of spare parts from different manufacturers

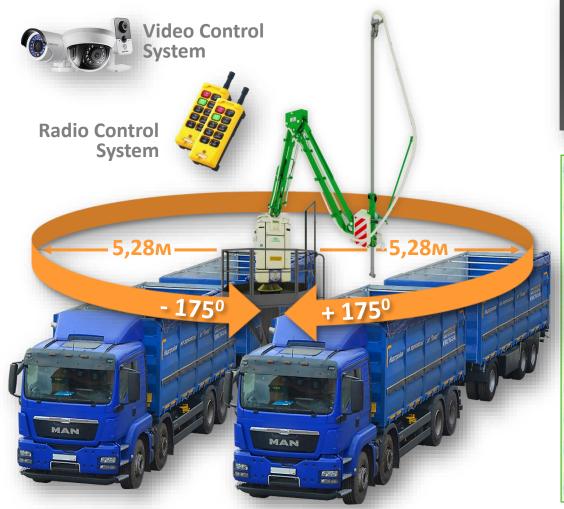




Purpose of Attracting Investments

We develop and manufacture three main lines of robotic systems that we want to make more modern and perfect:

Currently, we have launched a project that will make the car sampler fully automatic - thanks to intelligent cameras, it will recognize car bodies, independently choose the program and sampling algorithm, and monitor the safety of personnel.

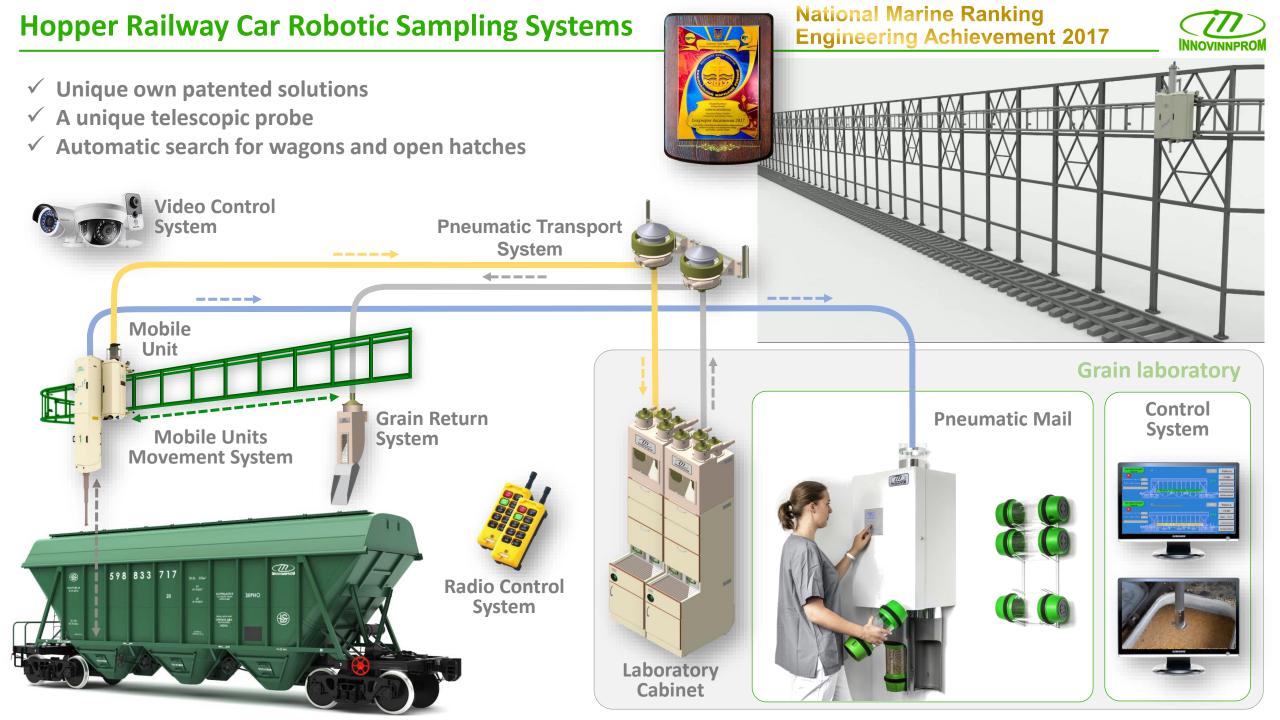

The railway sampler is currently fully automatic. Our solution has no analogues in the world. But we are looking for investments to complement it with a pneumatic logistics system with automatic loading and unloading of chipped capsules and an automated warehouse system for pneumatic capsules.

We are developing a new device - a flow scale with a grain sampling module. It should be a flexible robot that should automatically determine the type of grain crop, its weight, speed of movement and periodically send a grain sample to the laboratory.

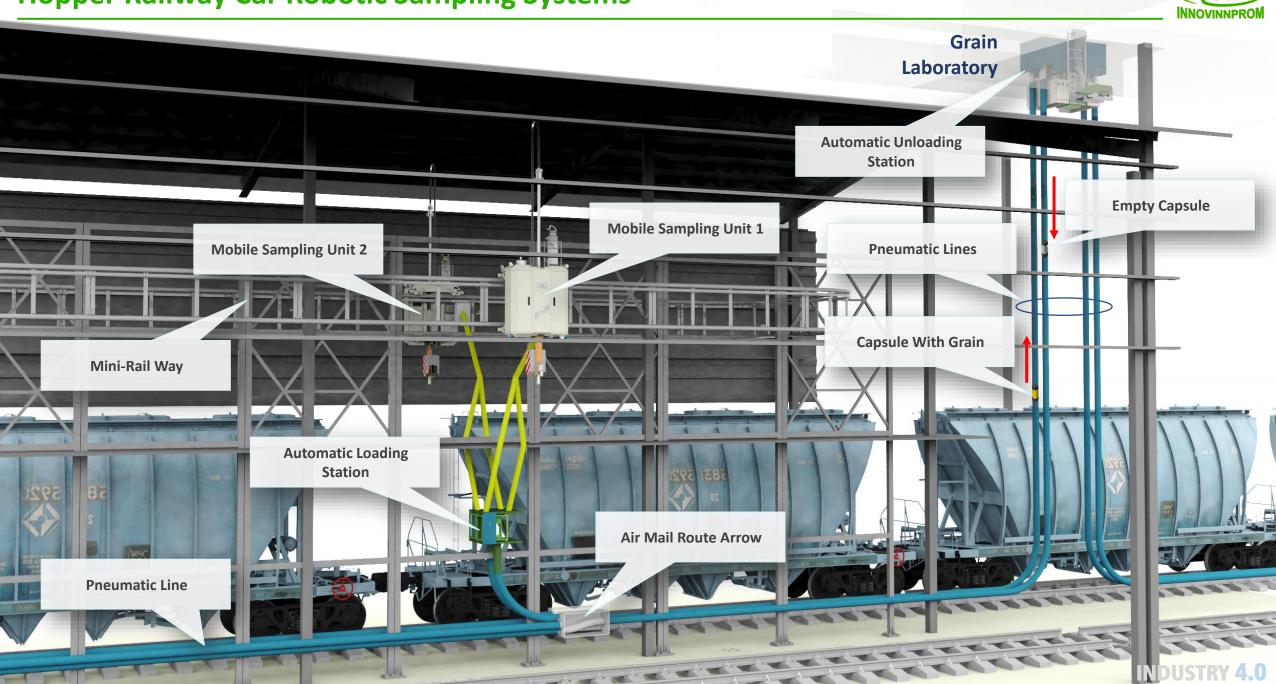
Automobile Sampler

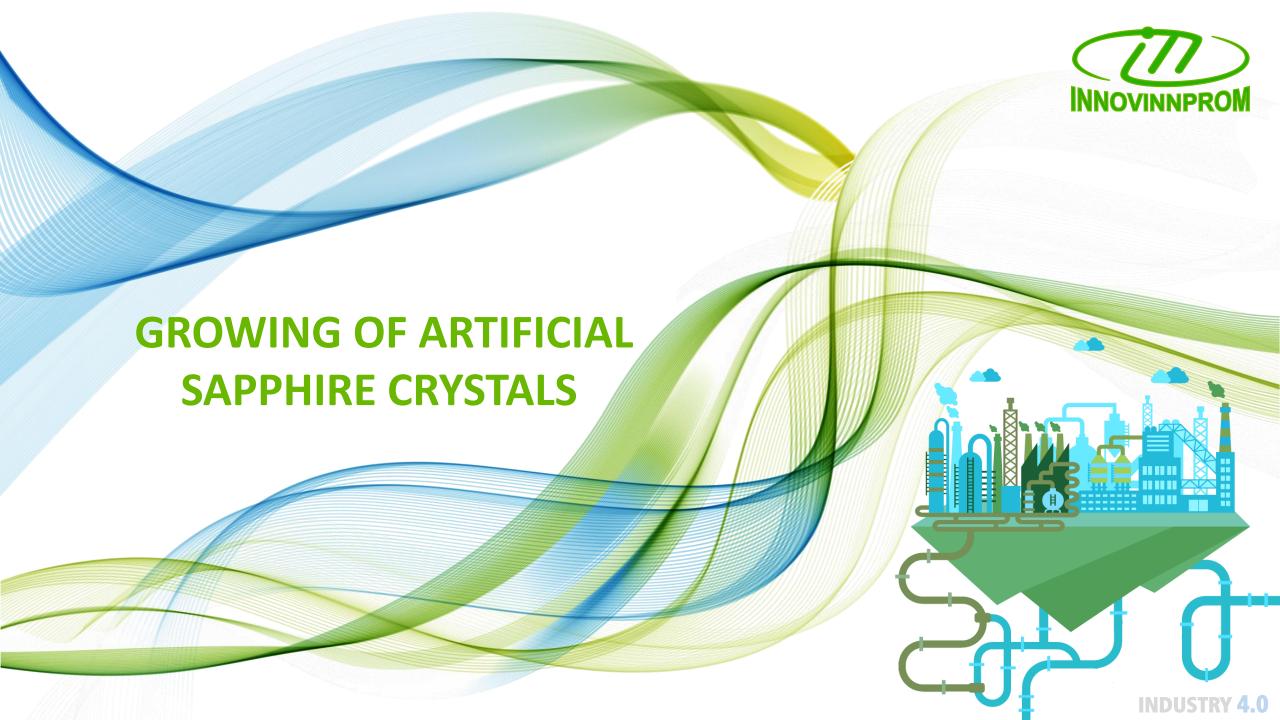
INNOVINNPROM

- √ Sampling from the bodies of two cars
- ✓ Sampling to the entire depth to the bottom of the body
- ✓ Automatic sending of the sample to the laboratory by pneumatic transport
- ✓ Radio control and video control



Engineering Achievement 2017 – Railway Sampler

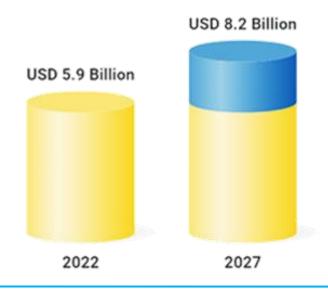

National maritime rating of Ukraine



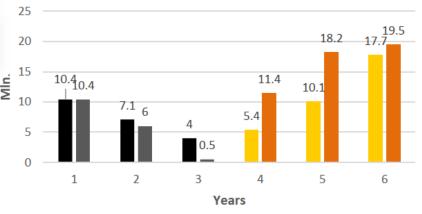
Hopper Railway Car Robotic Sampling Systems

Purpose of Attracting Investments

Високі технології



We have the technology for growing artificial sapphire crystals, we have the appropriate specialists, and we, together with our partners, have production facilities. We have a draft business plan for the construction of a crystal growing plant. The study of the world market shows the expected growth of the market for the sale of artificial crystals of several billion euros in the coming years.


Delta-K PromCrystal-S2 Omega DM300 **Omega PG350** 111111111 Innovations нновації Hi-tech

Global Synthetic Sapphire Market

Market forecast to grow at a CAGR of 6.6%

Investments or Loan/Profit

